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Adsorption of a hard sphere fluid in a slitlike pore filled with a disordered matrix
by the inhomogeneous replica Ornstein-Zernike equations
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The density distribution and pair distribution functions for a fluid adsorbed in a slitlike pore filled with a
quenched disordered hard sphere fluid are studied using theinhomogeneousreplica Ornstein-Zernike equations
with the inhomogeneousPercus-Yevick~PY! and hypernetted chain~HNC! approximations. The one and two
particle functions are related via the Born-Green-Yvon equation. For comparison, grand canonical Monte Carlo
simulation data are obtained. The agreement of the integral equation results with the simulation data is good.
In particular, we find ‘‘layering’’ in the density profiles near the pore boundaries. As the width of the pore is
decreased, these layers are ‘‘squeezed’’ out. The pair functions are also described satisfactorily by the integral
equations. The HNC results tend to be greater than the PY results near contact.@S1063-651X~98!04401-8#

PACS number~s!: 61.25.2f, 61.20.2p, 61.43.Dq, 68.45.Da
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I. INTRODUCTION

Recently, the problem of describing the structure a
thermodynamics of quenched-annealed~QA! mixtures has
received considerable experimental and theoretical inte
Such mixtures are comprised by a fluid component equ
brated in a matrix component. The matrix consists of p
ticles quenched in a disordered configuration obtained fr
an equilibrium ensemble equilibrated in the absence of
annealed species.

The experimental studies@1–4# have focused on phas
transitions in these systems. In particular, a remarkable
ference has been observed for the liquid-vapor and of
liquid-liquid coexistence curves for the quenched-annea
and purely annealed mixtures. Also, computer simulati
have been applied to QA fluids. Even though the models
simplified, these computer studies describe the impor
features of the phase diagram, its dependence on the i
particle interactions, and have provided a detailed desc
tion of the structural properties in terms of the distributi
functions.

Theoretical investigations of adsorption of fluids
quenched disordered and random matrices commence
the adaptation of the methods of liquid-state statistical m
chanics for usual mixtures. Random matrices are thos
which particles do not interact between themselves~ideal
gas! but interact with the fluid component.

Madden and Glandt@5,6# have derived cluster expansion
for the distribution functions and thermodynamic propert
for the systems in question and have obtained a se
Ornstein-Zernike–~OZ-! like integral equations for the rel
evant correlation functions. More recently, Given and S
571063-651X/98/57~2!/1824~8!/$15.00
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@7–9# have extended the replica method for the adsorption
homogeneous fluids in quenched disordered and random
trices. The replica Ornstein-Zernike~ROZ! equations repre-
sent one of their important results. Some models for Q
systems have been analyzed in subsequent theoretical st
and computer simulations@10–17#. The adequacy of the clo
sure approximations for the ROZ equations has been stu
and reliable adsorption isotherms for simple models h
been obtained. Still there remains room for further theor
cal progress. In particular, the virial route for thermodynam
properties of quenched-annealed mixtures is not sufficie
well probed, in spite of much effort@7,13,18#.

The majority of the aforementioned studies have been
stricted to a hard sphere fluid adsorbed either in a h
sphere disordered matrix or in random matrices; see, e
@14,15,17#. In some studies that focused on the liquid-vap
transition, the Lennard-Jones interaction between the fl
particles has been used@16,19#. A lowering of the critical
temperature of the adsorbed fluid with increasing matrix d
sity has been observed. However, the detailed shape o
coexistence curve depends crucially on the approximati
involved @19#. Very few attempts to consider quenche
annealed systems with Coulomb forces have been un
taken@20,21#. We have initiated a study of associative fluid
in disordered matrices employing the associative extens
of ROZ equations@22–25#. The use of differing interparticle
interactions in models for QA mixtures has contributed
our knowledge of these systems.

However, in contrast to previous studies, in this work o
focus is inhomogeneousquenched-annealed~IQA! fluids.
This problem is of practical interest for gel-exclusion chr
matography in separation science. Also, the study of ads
1824 © 1998 The American Physical Society
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tion of fluids in pores filled with a quenched component h
relevance to the extraction methodology from porous roc
Further, it is of importance for the study of fluids adsorbed
clays with quenched disordered pillars.

Actually, even in the construction of the theory for hom
geneous QA mixtures, some background from the study
inhomogeneous fluids is needed@13,18#. The problem of
IQA fluids was stated formally first in@26#. The inhomoge-
neous replica Ornstein-Zernike equations, complemented
either the Born-Green-Yvon~BGY!, or the Lovett-Mou-
Buff-Wertheim ~LMBW ! equation for the density profiles
were proposed to study the adsorption of a fluid near a p
boundary of a disordered matrix that has been assumed
form in a half-space.

However, to our knowledge, no numerical solution for
IQA fluid was presented until our very recent communic
tion @27#, dedicated to the adsorption of a hard sphere fluid
a slitlike pore filled with a quenched disordered matrix. T
format of that paper did not permit a detailed discussion
the results. Moreover, that numerical solution of the RO
equations for IQA fluids was not compared with compu
simulation results. Our focus in this more extended pape
to present some results that follow from the solution of
ROZ equations and compare them with grand canon
Monte Carlo~GCMC! simulation data. For the sake of sim
plicity, we will restrict ourselves to the same simple mod
used previously. Thus, we consider a hard sphere fluid
sorbed in a slitlike pore in which a disordered quenched m
trix of hard spheres has been prepared in advance.

The structure of the paper is as follows. We begin w
the description of the model and follow with a discussion
the theoretical method. The numerical procedure and
methodology of computer simulations are given in the fi
part of Sec. II. In Sec. III we present the results that
obtained. Finally, a summarizing discussion is given in S
IV.

II. A MODEL FOR INHOMOGENEOUS
QUENCHED-ANNEALED SYSTEM
AND THEORETICAL PROCEDURE

The model proposed in@27# describes an IQA fluid in a
slitlike pore. We assume that a fluid consisting of particles
speciesm has been adsorbed in a slitlike pore of the wid
H. The fluidm is the matrix component of the QA mixture
The pore walls are chosen to be normal to thez axis and the
pore is centered atz50. The matrix is assumed to be i
equilibrium with its bulk counterpart at the chemical pote
tial mm . The structural aspects of the matrix state are ch
acterized by the density profilerm(z) and by the inhomoge
neous pair correlation functionhmm(1,2). We assume that
due to external factors, the structure of the matrix spec
becomes quenched at a state determined bymm . Thus, a
confined porous medium~matrix-filled slitlike pore! has been
formed.

Now, we turn our attention to a subsequent physical
sorption of another fluid, belonging to the speciesf , in the
matrix-filled pore. The thermodynamic state of the fluidf
outside the matrix-filled pore is determined by the chemi
potentialm f . In the equilibrium state, the adsorbed fluidf
has the one particle density distributionr f(z). In contrast to
s
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the case of a fluid adsorbed in a matrix-free pore, the o
particle density functional depends on the chemical poten
of the matrix species,r f(z;mm). The pair distribution of the
f particles may be characterized by the inhomogeneous
relation functionhf f(1,2). Similar to previous studies@7–9#,
the matrix and fluid species in what follows bear subscript
and 1, respectively. We assume the simplest form for
interactions between particles and between the particles
pore walls, choosing both species as hard spheres of diam
s i , i 50,1,

Ui j ~r !5 H`,
0,

r ,s i j

r .s i j , Ui~z!5 H`,
0

z,0.5uH2s i u
otherwise,

~1!

wherei , j are species indices.
We begin with the presentation of theoretical tools for t

determination of the matrix structure. In contrast to the us
~annealed! mixtures ~where the correlations of all involved
components are coupled!, the matrix structural characteris
tics for QA mixtures are the input. Usually, for homogeneo
matrices, the structure is obtained by solving the Ornste
Zernike equation employing any of standard liquid-state c
sures; see, e.g.,@14,15#. As mentioned above, we choose th
matrix structure to correspond to the equilibrium grand
nonical ensemble for matrix particles in a pore. A compu
simulated structure may be used for this purpose. Howe
to be consistent with the following procedure for the flui
fluid and the fluid-matrix correlations, in this work we obta
the structure of a quenched inhomogeneous matrix, using
inhomogeneous, or second order, Ornstein-Zernike~OZ2!
equation, which reads

h00~1,2!2c00~1,2!5E d3r0~z3!c00~1,3!h00~3,2!, ~2!

supplemented by the LMBW equation for the density profi
~DP!

] lnr0~z1!

]z1
1

]bU~z1!

]z1
5E d2c00~1,2!

]r0~z2!

]z2
~3!

and the second order Percus-Yevick~PY2! closure

y00~1,2!511h00~1,2!2c00~1,2!. ~4!

In Eq. ~4!, y00(1,2) is the inhomogeneous cavity distributio
function. The solution of the problem, comprising Eqs.~2!–
~4!, yieldsr0(z) andh00(1,2), such that the one-particle ca
ity distribution function y0(z), y0(z)5r0(z)exp@bU(z)#,
tends to its limiting value outside the pore region. This va
is determined by the configurational part of the chemi
potential for the matrix species,y0(z→6`)5exp(bm0).

Let us proceed with the inhomogeneous replica Ornste
Zernike equations that represent the essence of the theo
cal procedure. They are given as follows@26#:
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h10~1,2!2c10~1,2!5E d3r0~z3!c10~1,3!h00~3,2!

1E d3r1~z3!cc,11~1,3!h10~3,2!,

h01~1,2!2c01~1,2!5E d3r0~z3!c00~1,3!h01~3,2!

1E d3r1~z3!c01~1,3!hc,11~3,2!,

h11~1,2!2c11~1,2!5E d3r0~z3!c10~1,3!h01~3,2!

1E d3r1~z3!cc,11~1,3!h11~3,2!

1E d3r1~z3!cb,11~1,3!hc,11~3,2!,

hc,11~1,2!2cc,11~1,2!5E d3r1~z3!cc,11~1,3!hc,11~3,2!.

~5!

The fluid-fluid pair (h) and direct (c) correlation func-
tions consist of the blocking and connected part,w11(1,2)
5wb,11(1,2)1wc,11(1,2), where the functionw stands forh
or c, as appropriate. The blocking part of the inhomogene
fluid-fluid pair correlation function corresponds to the sub
of graphs constructed from the Mayer functions of the int
particle interactions such that all paths between the two
points pass through at least one matrix field point@26#, simi-
lar to bulk QA fluids@7–9,14#. However, for our model, the
root and field points are weighted by the Boltzmann fact
of the relevant external field.

We apply the BGY equation as the relation that coup
the local densities~density profiles! with the inhomogeneous
pair correlation functions. The BGY equation reads@26#

] ln r1~z1!

]z1
1b

]w~z1!

]z1
52bE d2r1~z2!g11~1,2!

3
]U11~12!

]z2
, ~6!

where g11(1,2)511h11(1,2), and the effective one-bod
potentialw(z) satisfies the relation

]w~z1!

]z1
5

]U~z1!

]z1
1E d2r0~z2!g10~1,2!

]U10~12!

]z2
.

~7!

and whereg10(1,2)511h10(1,2). In fact, one could use th
LMBW equation for the density profiles instead of the BG
equation. The former also has been derived in@26#. How-
ever, we find the application of the LMBW equation le
clear methodologically; it requires an additional approxim
tion for an ‘‘auxilary’’ direct correlation function of the
fluid-matrix correlations. See@26# for a more detailed discus
sion; here we only comment that if one uses a representa
of the IQA system in the form of its replicated analog, th
s
t
-
ot

s

s

-

on

using the BGY equation involves taking straightforward d
rivatives with respect to the external field whereas
LMBW equation formally requires derivatives with respe
to the pair interaction potential of particles belonging to no
interacting replicas of the original fluid.

Finally, the closure relations for the inhomogeneous p
functions must be chosen. The detailed analysis of Stell
Given @7–9# ~see also Ref.@14# for more details! has shown
that the hypernetted chain closure is consistent with the R
equations for the adsorption of fluids in homogeneous dis
dered matrices while the PY closure belongs to a class
approximations used previously by Madden and Glandt@5#
and is not consistent in this respect. The PY approximat
for the fluid-fluid direct correlation function presumes that
blocking part vanishes. To get as much insight into the pr
lem as possible, we use both closures in this work.

The inhomogeneous, or second order, Percus-Yev
~PY2! approximation implies

cb,11~ i , j !50 ~8!

and

yi j ~1,2!511hi j ~1,2!2ci j ~1,2! ~9!

for ( i , j )5(1,0) and~1,1!. On the other hand, the inhomoge
neous, or second order, hypernetted chain~HNC2! approxi-
mation reads

cb,11~ i , j !5exp$hb,11~ i , j !2cb,11~ i , j !%212$hb,11~ i , j !

2cb,11~ i , j !% ~10!

for the blocking term of the fluid-fluid function, and

yi j ~1,2!5exp$hi j ~1,2!2ci j ~1,2!% ~11!

for ( i , j )5(1,0) and~1,1!.
Before discussing our numerical scheme, we make so

preliminary comments. First, the matrix structure is eva
ated from Eqs.~2!–~4!. Next, we must solve Eqs.~5!–~7!
either with PY2 closure for the inhomogeneous repl
Ornstein-Zernike equations given by Eqs.~8! and~9! or with
the HNC2 approximation defined by Eqs.~10! and~11!. The
problem comprises three equations of the OZ2 type. T
symmetryh10(1,2)5h01(2,1) is helpful in their solution. We
apply the boundary condition, such that the one-particle c
ity distribution function y1(z), y1(z)5r1(z)exp@bU(z)#,
tends to its limiting value, determined by the configuration
part of the fluid chemical potential. Now let us discuss so
technical aspects of the solution briefly. They are similar
those used previously@28,29#. The numerical algorithm for
the solution of the IROZ equations, together with the BG
equation, and with the PY2 or HNC2 closure uses an exp
sion of the two-particle functions into a Fourier-Bessel s
ries. The threefold integrations in the system of IROZ eq
tions reduce to sums of one-dimensional integrations. In
calculations, the grid size in the normal direction has be
Dz50.05 and 121 terms in the Fourier-Bessel expans
have been included. The BGY equation contains the d
function due to the derivative of the pair interactions. The
fore the integrals in Eqs.~6! and~7! are onefold and contain
the ‘‘contact’’ values of the functionsgi j (z1 ,z2 ,AR21z12

2
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57 1827ADSORPTION OF A HARD SPHERE FLUID INA . . .
51) for (i , j )5(1,0) and ~1,1!; these values have bee
evaluated by interpolation. As is often the case, the con
gence of the numerical scheme is more difficult for t
HNC2 closure than for the PY2 closure.

Finally, we discuss the methodology of the GCM
simulations for inhomogeneous quenched-annealed syst
A rectangular simulational cell whose dimensions we
10s0310s03H with periodic boundary conditions in th
plane parallel to the pore walls was used. The simulati
consisted of two steps. In the first step, the grand canon
ensemble technique was used to fill the pore with the h
sphere matrix. After equilibration, a configuration of matr
particles whose number of particles corresponded to the
erage number of particles at the given chemical potential
selected and the second step of the simulations was sta
During this step, we performed grand canonical ensem
simulations of the fluid in a pore filled with the matrix sp
cies. At the given values of the matrix and fluid chemic
potentials, the simulations were repeated several times s
ing from different matrix configurations. During the produ
tion runs we performed at least 53106 Monte Carlo steps;
each step consisted of an attempt to move, an attemp
destroy, and an attempt to create a particle that had b
selected with equal probability.

We found that 5–10 replicas of the matrix usually assu
good statistics for the determination of the local fluid de
sity. However, the evaluation of the nonuniform pair dist
bution functions required much longer runs; at least 100 m
trix replicas were necessary to calculate the correla
functions for particles parallel to the pore walls. Howev
even as many as 500 replicas did not ensure the converg
of the simulational results for perpendicular configuratio
For this reason we do not present such results here. Com
sons with theory are made only for the configurations t
are parallel to the pore walls.

III. RESULTS

Since we use the grand canonical ensemble, we giv
plot of the relation between the chemical potential and d
sity for hard spheres in Fig. 1. The approximate but qu
accurate Carnahan-Starling equation of state for hard sph
was used to obtain Fig. 1.

FIG. 1. Chemical potential, including lnr, of hard spheres as
function of the density as given by the Carnahan-Starling equa
of state.
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First, we analyze the density profiles of adsorbed fluid
matrix-filled pores at different conditions~Figs. 2–4!. Figure
2 shows the density profiles obtained forbm050.935. The
density of the quenched component in a narrow pore,H
52, is much higher throughout the pore than is the density
its bulk counterpart. However, the matrix density distrib
tion, r0(z), is almost uniform, the contact value is not mu
higher than in the pore center~Fig. 2!. Therefore, the distri-
bution of empty space throughout the pore width is alm
homogeneous. The annealed fluid distribution is similar
that in a matrix-empty pore. At a low value for the chemic
potential,bm1 , the presence of matrix species in this narro
pore results in a low adsorption of the annealed species. W
increasing chemical potential of fluid species, the density

n FIG. 2. A comparison of the simulated~GCMC! and theoretical
~ROZ21BGY1HNC2 and PY2 approximations! density profiles,
r1(z), of an adsorbed fluid and in a disordered inhomogene
matrix in a slitlike pore of the widthH52. The chemical potentia
of the matrix particles isbm050.935. The curves labeled 1, 2, 3
and 4 here and below are for the chemical potential of fluid spe
bm150.935, 3.1136, 4.8147, and 5.8346, respectively. The P
HNC2, and Monte Carlo results are given by the solid and das
lines, and the symbols, respectively. The results for the state lab
2 are not shown in this figure. The dotted line corresponds to
density profile of fixed obstacles,r0(z).

FIG. 3. The same as in Fig. 2 but for the poreH54. In the left
panel the chemical potential of matrix species isbm050.935, in the
right bm053.1136. The nomenclature of the curves is similar
that in Fig. 1. The dotted line shows the matrix density profile.
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1828 57KOVALENKO, SOKOŁOWSKI, HENDERSON, AND PIZIO
adsorbed fluid close to the pore walls increases substanti
whereas in the pore centerr1(z) remains almost unaltered
Both theories, namely, the HNC2 and PY2 approximatio
yield very similar results for the density profiles; they bo
agree quite well with the computer simulation data. Ho
ever, some discrepancies between the theory and simula
are observed close to the walls in a narrow pore.

Now consider adsorption in wider pores,H54 ~Fig. 3!
andH56 ~Fig. 4!. We have studied a fluid distribution in
pore H54 at two values of the chemical potential for th
quenched component,bm050.935 andbm053.1136. At
higherbm0 , a more structured density profile of the matr
species is seen. In this pore, we observe layering of the
sorbed fluid at high values of the chemical potential,bm1 .
This layering is similar to the case of a matrix-empty po
The maxima of the density profiler1(z) are observed a
distances that correspond to the diameter of fluid particle
seems that the effects of adsorption of fluid species on ma
particles are not important in the model of equal diamete
With an increase of the fluid chemical potential, the po
filling occurs primarily at pore walls~Fig. 3!. In the case of a
wide pore, a second maximum on the density profiler1(z) is
observed. The theory reproduces the computer simulation
sults quite well. The absence of a large difference betw
the PY2 and HNC2 theories indicates that blocking effe
due to the presence of the matrix are not essential.

In Fig. 5 we show the GCMC results for the matrix de
sity profile r0(z) @part ~a!# for the fluid distribution in a
matrix-empty pore@part ~b!# and the profilesr1(z) in a
matrix-filled pore@part ~c!# for pores of various width. The
contact value ofr0(z) corresponds to a solvation force fo
the matrix species at the conditions before they have b
quenched. The contact value of the density profile of fl
species corresponds to a solvation force of pure fluid.
cause of the choice of the matrix and fluid chemical pot
tials ~see the caption for Fig. 5! the solvation force that fol-
lows from r1(z) exhibits large oscillations. The conta
value of the fluid particles in a matrix-filled pore does n
lead to a straightforward interpretation in terms of the sol
tion force. We merely state that the contact values for

FIG. 4. The HNC2 and GCMC results for the density profil
for the case of a wide pore,H56. The chemical potential of the
matrix species isbm054.8147; the chemical potential of the flui
species isbm153.1136 ~lower curves and symbols! and bm1

57.0026~upper curve and symbols!.
ly,
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profile r1(z) are much lower for a matrix-filled pore than fo
a matrix-empty pore, reflecting lower adsorption in t
former case. We stress that the HNC2 approximation rep
duces well the computer simulation data for pores of diff
ent widths. However, in the pore center we observe a

FIG. 5. ~a! ~solely for a matrix filled pore! The density profiles
of the matrix species from the GCMC simulations for pores
different widths at a fixed value of the chemical potentialbm0

53.1136. The curves from left to the center are forH53, 2.8, 2.6,
2.4, 2.2, 2.0, 1.8, 1.6, 1.4, and 1.2, respectively. The solid cu
shows the evolution of the contact value of the density profile w
pore width.~b! ~solely for a fluid filled pore! The density profiles
for the fluid species at the chemical potentialbm158.3530.~c! ~the
adsorption of the fluid in a matrix filled pore! The values of the
chemical potentials for matrix and fluid species are the same a
parts~a! and ~b!, respectively.
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57 1829ADSORPTION OF A HARD SPHERE FLUID INA . . .
crepancy between the theory and simulations for wide po
~Fig. 6!.

The adequacy of the HNC2 approximation is not
stricted to the model with equal diameters. In Fig. 7

FIG. 6. A comparison of the GCMC~symbols! and HNC2
~lines! results for the density profiles of the fluid species in
matrix-filled pore. The chemical potentials of the matrix and flu
species are the same as in Fig. 5. The pore width isH53.0, 2.4, 1.8,
and 1.4 from left to the center.

FIG. 7. A comparison of the density profiles for the adsorb
fluid species in a matrix-filled pore from GCMC simulations~sym-
bols! and HNC2 results~solid lines! for pore widthH53 @part ~a!#
and H54 @part ~b!#. The diameter of the matrix particles is twic
the diameter of the fluid particles. The chemical potentials of
matrix and fluid species are the same as in Fig. 5.
s

-

present a comparison between the HNC2 and GCMC res
for the model in which matrix particles are two times larg
than fluid particles. Again the agreement is quite good.

Let us proceed with a brief description of the inhomog
neous pair correlation functions for the model. Obvious
the determination of the pair correlation functions from t
computer simulations is a rather difficult task for this mod
In Figs. 8 and 9 we present the projections of the pair co
lation functions for particles parallel to the pore walls. Tho
are discussed in the plane of the closest approach to the
walls and in the pore center. In the caseH53, we observe
that parallel correlations between the fluid particles are str
ger in the pore center than at the pore walls~Fig. 8!. In
contrast, the fluid-matrix parallel correlations are sligh
stronger in the plane of the closest approach, due to
higher value of the matrix density at the walls. The theor
ical approximations~HNC2 and PY2! agree well with the

d

e

FIG. 8. A comparison of the fluid-fluid inhomogeneous pa
distribution functionsg11(1,2) obtained using the HNC2 and PY
approximations in the ROZ21BGY equations, with GCMC results
The functionsg11

i ,w ~left panel! andg11
i ,c ~right panel! are for the fluid

particles in a parallel configuration in the plane of closest appro
to the pore walls and in the pore center. The HNC2 and PY2 res
are given by the solid and dashed lines, respectively. The GC
results are given as symbols. The fluid and matrix particles ar
equal size. The chemical potentials of matrix and fluid species
as in Fig. 5. The pore width isH53.

FIG. 9. The same as in Fig. 8 but for the fluid-matrix inhom
geneous pair distribution function.
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simulation data. Similarly to the case of homogeneous pa
quenched systems@14#, the HNC2 approximation yields
slightly higher contact values for the pair correlation fun
tions at the contact than does the PY2 approximation.
accuracy of each approximation depends on the quench
ditions and on the chemical potential of fluid species. Ho
ever, both theories are adequate for the model with eq
diameters of particles as well as for the model when
obstacle diameter is two times larger than that of the fl
particles ~Figs. 10 and 11!. The discrepancy between th
theories and simulations increases slightly for the mode
unequal diameters in comparison with that for equal dia
eters, especially for intermediate interparticle separatio
The positions of the second maxima of the correlation fu
tions can be explained from geometrical considerations.

We present both the normal and parallel projections of
fluid-fluid pair correlation function in Fig. 12. It is importan
to note that the normal correlations are stronger in comp
son to the parallel ones for small separations between fl

FIG. 10. The HNC2~lines! and GCMC ~symbols! fluid-fluid
inhomogeneous pair distribution functions for a configuration p
allel to the wall in the plane of closest approach~solid line and
diamonds! and in the pore center~dashed line and crosses!; g11

i ,w and
g11

i ,c , respectively. The diameter of matrix particles is twice t
diameter of fluid particles. The chemical potentials of matrix a
fluid species are as in Fig. 7. The pore width isH54.

FIG. 11. The same as in Fig. 10 but for the fluid-matrix p
distribution function.
ly

-
e
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-
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e
d
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e

i-
id

particles. However, the intracore blocking effects are lar
for parallel configurations of particles. Outside the hard c
region, the blocking effects are negligible for all the config
rations considered~Fig. 13!. Similar effects to those shown
in Fig. 12 are observed for the fluid-matrix pair correlatio
function ~Fig. 14!.

IV. CONCLUSIONS

We have solved the inhomogeneous replica OZ equat
for a model of an inhomogeneously quenched matrix and
inhomogeneous fluid. We have considered the simp
model ~hard spheres! and approximations. When the pore
wide, ‘‘layering’’ is found in the density profiles. As the por
becomes more narrow, these layers are ‘‘squeezed’’ out.

FIG. 12. The HNC2~solid lines! and PY2~dashed lines! inho-
mogeneous fluid-fluid pair distribution functions for the model w
equal diameters of the fluid and matrix particles in the poreH54.
The chemical potentials of matrix and fluid species arebṁ0

53.1136 andbm155.8346, respectively. The curves labeled 1,
and 3 correspond to a parallel configuration of the fluid particles
the plane of closest approach to the pore walls, in the pore ce
andg11

norm. In the normal configuration one of the fluid particles
fixed at contact with a pore wall and the second one moves a
the normal to the pore wall. The pair distribution function for th
normal configuration is shifted by unity along ther axis for the sake
of better visualization.

FIG. 13. The blocking parts of the inhomogeneous pair dis
bution functions for fluid particles given in Fig. 12 under all th
same conditions.
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profiles are large near the pore walls and smaller near
center of the pore. When the pore becomes very small,
value of the profile at the center becomes larger so that
profile is nearly uniform. Both the PY and HNC approxim
tions lead to good agreement with our GCMC simulati
results. In addition, we have reported some results for
pair correlation functions.

FIG. 14. The same as in Fig. 12 but for the inhomogene
fluid-matrix pair distribution function.
v.

.

-

ev

ys

ue
e
e
e

e

If more sophisticated approximations for the IROZ equations were used~the
hypernetted chain closure consistent with the ROZ equations may be im
mented without difficulty! and models that include more complex and a
tractive fluid-fluid, fluid-matrix, and fluid-walls interactions were used, w
expect that interesting effects~such as phase transitions! would be found.
The question of the accuracy of the PY and HNC approximations shoul
reconsidered in these situations. Density functional theory should be co
ered. So far, such theories have not been applied to inhomogeneous
quenched systems. Also, interesting possibilities can arise if the ma
would be prepared in some special way.
Undoubtedly, these and other options may yield unexpected and rich s
tural and thermodynamic behavior in partly quenched confined systems.
perspectives for investigations in the field that is just opened by the solu
of IROZ equations are very promising.
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