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The density distribution and pair distribution functions for a fluid adsorbed in a slitlike pore filled with a
quenched disordered hard sphere fluid are studied usirigibenogeneouseplica Ornstein-Zernike equations
with theinhomogeneouPercus-YevickKPY) and hypernetted chaifHNC) approximations. The one and two
particle functions are related via the Born-Green-Yvon equation. For comparison, grand canonical Monte Carlo
simulation data are obtained. The agreement of the integral equation results with the simulation data is good.
In particular, we find “layering” in the density profiles near the pore boundaries. As the width of the pore is
decreased, these layers are “squeezed” out. The pair functions are also described satisfactorily by the integral
equations. The HNC results tend to be greater than the PY results near cBi8&3-651X98)04401-9

PACS numbsgs): 61.25—f, 61.20—p, 61.43.Dq, 68.45.Da

[. INTRODUCTION [7-9] have extended the replica method for the adsorption of
homogeneous fluids in quenched disordered and random ma-
Recently, the problem of describing the structure andrices. The replica Ornstein-ZernikROZ) equations repre-
thermodynamics of quenched-anneal§A) mixtures has sent one of their important results. Some models for QA
received considerable experimental and theoretical interessystems have been analyzed in subsequent theoretical studies
Such mixtures are comprised by a fluid component equiliand computer simulatiof40-17. The adequacy of the clo-
brated in a matrix component. The matrix consists of parsure approximations for the ROZ equations has been studied
ticles quenched in a disordered configuration obtained fronand reliable adsorption isotherms for simple models have
an equilibrium ensemble equilibrated in the absence of théeen obtained. Still there remains room for further theoreti-
annealed species. cal progress. In particular, the virial route for thermodynamic
The experimental studielsl—4] have focused on phase properties of quenched-annealed mixtures is not sufficiently
transitions in these systems. In particular, a remarkable difwell probed, in spite of much effoff7,13,1§.
ference has been observed for the liquid-vapor and of the The majority of the aforementioned studies have been re-
liquid-liquid coexistence curves for the quenched-annealedtricted to a hard sphere fluid adsorbed either in a hard
and purely annealed mixtures. Also, computer simulationsphere disordered matrix or in random matrices; see, e.g.,
have been applied to QA fluids. Even though the models arfl4,15,17. In some studies that focused on the liquid-vapor
simplified, these computer studies describe the importartransition, the Lennard-Jones interaction between the fluid
features of the phase diagram, its dependence on the intgoarticles has been usgd6,19. A lowering of the critical
particle interactions, and have provided a detailed descriplemperature of the adsorbed fluid with increasing matrix den-
tion of the structural properties in terms of the distributionsity has been observed. However, the detailed shape of the
functions. coexistence curve depends crucially on the approximations
Theoretical investigations of adsorption of fluids in involved [19]. Very few attempts to consider quenched-
guenched disordered and random matrices commence froemnealed systems with Coulomb forces have been under-
the adaptation of the methods of liquid-state statistical metaken[20,21]. We have initiated a study of associative fluids
chanics for usual mixtures. Random matrices are those im disordered matrices employing the associative extension
which particles do not interact between themseltideal of ROZ equation$22—25. The use of differing interparticle
gag but interact with the fluid component. interactions in models for QA mixtures has contributed to
Madden and Gland,6] have derived cluster expansions our knowledge of these systems.
for the distribution functions and thermodynamic properties However, in contrast to previous studies, in this work our
for the systems in question and have obtained a set dbcus is inhomogeneousjuenched-annealedQA) fluids.
Ornstein-Zernike{OZ-) like integral equations for the rel- This problem is of practical interest for gel-exclusion chro-
evant correlation functions. More recently, Given and Stellmatography in separation science. Also, the study of adsorp-
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tion of fluids in pores filled with a quenched component haghe case of a fluid adsorbed in a matrix-free pore, the one-
relevance to the extraction methodology from porous rocksparticle density functional depends on the chemical potential
Further, it is of importance for the study of fluids adsorbed inof the matrix species(z; u,). The pair distribution of the
clays with quenched disordered pillars. f particles may be characterized by the inhomogeneous cor-
Actually, even in the construction of the theory for homo- relation functionh;;(1,2). Similar to previous studi¢g—9],
geneous QA mixtures, some background from the study ofhe matrix and fluid species in what follows bear subscripts 0
inhomogeneous fluids is need¢d3,18. The problem of and 1, respectively. We assume the simplest form for the
IQA fluids was stated formally first ifi26]. The inhomoge- interactions between particles and between the particles and
neous replica Ornstein-Zernike equations, complemented byore walls, choosing both species as hard spheres of diameter
either the Born-Green-Yvor(BGY), or the Lovett-Mou- ¢y, i=0,1,
Buff-Wertheim (LMBW) equation for the density profiles,
were proposed to study the adsorption of a fluid near a plane
boundary of a disordered matrix that has been assumed uni- Ui (r)= ®, I<oj Ui(2)= ©, Z<0-51|Hf<7i|
form in a half-space. N 0, r>oy, 0  otherwise,
However, to our knowledge, no numerical solution for an 1)
IQA fluid was presented until our very recent communica-
tion[27], dedicated to the adsorption of a hard sphere fluid inyherei ,j are species indices.
a slitlike pore filled with a quenched disordered matrix. The e pegin with the presentation of theoretical tools for the
format of that paper did not permit a detailed discussion Ofjetermination of the matrix structure. In contrast to the usual
the results. Moreover, that numerical solution of the ROZ(annealeyl mixtures (where the correlations of all involved
equations for IQA fluids was not compared with computercomponents are coupledthe matrix structural characteris-
simulation results. Our focus in this more extende_d paper igics for QA mixtures are the input. Usually, for homogeneous
to present some results that follow from the solution of thematrices, the structure is obtained by solving the Ornstein-
ROZ equations and compare them with grand canonicayernike equation employing any of standard liquid-state clo-
Monte Carlo(GCMC) simulation data. For the sake of sim- sures; see, e.q.14,15. As mentioned above, we choose the
plicity, we will restrict ourselves to the same simple modelmatrix structure to correspond to the equilibrium grand ca-
used previously. Thus, we consider a hard sphere fluid adyonjical ensemble for matrix particles in a pore. A computer
sorbed in a slitlike pore in which a disordered quenched magjmylated structure may be used for this purpose. However,
trix of hard spheres has been prepared in advance. ~to pe consistent with the following procedure for the fluid-
The structure of the paper is as follows. We begin withfjyig and the fluid-matrix correlations, in this work we obtain
the description of the model and follow with a discussion ofhe structure of a guenched inhomogeneous matrix, using the

the theoretical method. The numerical procedure and thg\nomogeneous, or second order, Ornstein-ZerfiR&2)
methodology of computer simulations are given in the finaleqyation, which reads

part of Sec. Il. In Sec. lll we present the results that are
obtained. Finally, a summarizing discussion is given in Sec.
V.

hoo( 1,2 — Coo( 1,2 = f d3po(25)Cog LANed(3.2, (2)

1. A MODEL FOR INHOMOGENEOUS

QUENCHED-ANNEALED SYSTEM supplemented by the LMBW equation for the density profile
AND THEORETICAL PROCEDURE (DP)
The model proposed if27] describes an IQA fluid in a
slitlike pore. We assume that a fluid consisting of particles of d Inpp(z1) 9BU(zy) B po(Zy)
speciesm has been adsorbed in a slitlike pore of the width 9z, + oz, d2coy(1,2) 9z, )

H. The fluidm is the matrix component of the QA mixture.

The pore walls are chosen to be normal to ztexis and the

pore is centered at=0. The matrix is assumed to be in and the second order Percus-Yeviék/2) closure

equilibrium with its bulk counterpart at the chemical poten-

tial u,. The structural aspects of the matrix state are char- _ _

acterized by the density profijg,(z) and by the inhomoge- Yool 1,2 =1+ hoo(1,2) = Cool 1,2). @

neous pair correlation functioh,(1,2). We assume that,

due to external factors, the structure of the matrix specietn Eq. (4), yoo(1,2) is the inhomogeneous cavity distribution

becomes quenched at a state determineduRy Thus, a function. The solution of the problem, comprising E(®—

confined porous mediuiimatrix-filled slitlike porg has been (4), yieldspy(z) andhyy(1,2), such that the one-particle cav-

formed. ity distribution function yo(2), Yo(2)=po(2)exd BU(2)],
Now, we turn our attention to a subsequent physical adtends to its limiting value outside the pore region. This value

sorption of another fluid, belonging to the specfesn the is determined by the configurational part of the chemical

matrix-filled pore. The thermodynamic state of the fldid potential for the matrix speciegy(z— * ) =expBug).

outside the matrix-filled pore is determined by the chemical Let us proceed with the inhomogeneous replica Ornstein-

potential us . In the equilibrium state, the adsorbed fliid Zernike equations that represent the essence of the theoreti-

has the one particle density distributipp(z). In contrast to  cal procedure. They are given as folloj&6]:
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+f d3p1(z3)Cc11(1,3)h1o(3,2),

ho1(1,2) —Cpy(1,2) = f d3po(z3)Coo(1,3)g1(3,2)

+j d3p1(23)C01(1,3)N¢ 14(3,2),

mﬂLa—qﬂL@=Id&wQQ%dLEMK&3
“'j d3p1(z3)Cc11(1,3)h14(3,2)

+f d3p;(z3)Cp12(1,3)h¢ 14(3,2),

hc,ll(liz)_cc,ll(lvz):f d3p1(z3)cc11(1,9 ¢ 11(3,2).
5
The fluid-fluid pair f) and direct €) correlation func-

tions consist of the blocking and connected parf;(1,2)
=@p11(1,2)+ ¢ 11(1,2), where the functiorp stands forh

orc, as appropriate. The blocking part of the inhomogeneous
fluid-fluid pair correlation function corresponds to the subset
of graphs constructed from the Mayer functions of the inter-
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using the BGY equation involves taking straightforward de-
rivatives with respect to the external field whereas the
LMBW equation formally requires derivatives with respect
to the pair interaction potential of particles belonging to non-
interacting replicas of the original fluid.

Finally, the closure relations for the inhomogeneous pair
functions must be chosen. The detailed analysis of Stell and
Given[7-9] (see also Ref.14] for more details has shown
that the hypernetted chain closure is consistent with the ROZ
equations for the adsorption of fluids in homogeneous disor-
dered matrices while the PY closure belongs to a class of
approximations used previously by Madden and Gldadit
and is not consistent in this respect. The PY approximation
for the fluid-fluid direct correlation function presumes that its
blocking part vanishes. To get as much insight into the prob-
lem as possible, we use both closures in this work.

The inhomogeneous, or second order, Percus-Yevick
(PY?2) approximation implies

®

Cpaa(iyj)=
and
Yij(1,2= (9)

for (i,j)=(1,0) and(1,1). On the other hand, the inhomoge-
neous, or second order, hypernetted cH&lhNC2) approxi-
mation reads

Cpa1(i,j)=exp{hy 11(i,j) — Cp11(i,]) } —1—{hp 14(i,})

1+h;(1,2-¢;(1,2

particle interactions such that all paths between the two root

points pass through at least one matrix field ppa&|, simi-
lar to bulk QA fluids[7—-9,14. However, for our model, the

root and field points are weighted by the Boltzmann factors
s‘for (i,j)=(1,0) and(1,1).

of the relevant external field.

We apply the BGY equation as the relation that couple
the local densitiesdensity profiley with the inhomogeneous
pair correlation functions. The BGY equation re4é§]

d91In py(zy) Iw(zy) J
9z, + 0z, =—p| d2p1(22)911(1,2
dU11(12)
Xﬁ—zz’ (6)

where g441(1,2)=1+h44(1,2), and the effective one-body
potentialw(z) satisfies the relation

IW( 21)
iz,

AU( Zl) 10( 12)

f d2pg(22)910(1,2)
(7
and whereg;o(1,2)=1+h;4(1,2). In fact, one could use the

LMBW equation for the density profiles instead of the BGY
equation. The former also has been derived46]. How-

—Cpaa(i,j)} (10
for the blocking term of the fluid-fluid function, and
yij(1,2)=exp{hij(l,Z)_Cij(l,Z)} (11)

Before discussing our numerical scheme, we make some
preliminary comments. First, the matrix structure is evalu-
ated from Eqs(2)—(4). Next, we must solve Eqg5)—(7)
either with PY2 closure for the inhomogeneous replica
Ornstein-Zernike equations given by E¢) and(9) or with
the HNC2 approximation defined by Eq40) and(11). The
problem comprises three equations of the OZ2 type. The
symmetryh,o(1,2)=hg(2,1) is helpful in their solution. We
apply the boundary condition, such that the one-particle cav-
ity distribution function y,(2), y1(2)=p1(2)exdBU(2],
tends to its limiting value, determined by the configurational
part of the fluid chemical potential. Now let us discuss some
technical aspects of the solution briefly. They are similar to
those used previouslj28,29. The numerical algorithm for
the solution of the IROZ equations, together with the BGY
equation, and with the PY2 or HNC2 closure uses an expan-
sion of the two-particle functions into a Fourier-Bessel se-
ries. The threefold integrations in the system of IROZ equa-
tions reduce to sums of one-dimensional integrations. In our

ever, we find the application of the LMBW equation less calculations, the grid size in the normal direction has been
clear methodologically; it requires an additional approxima-Az=0.05 and 121 terms in the Fourier-Bessel expansion

tion for an “auxilary” direct correlation function of the
fluid-matrix correlations. Sel26] for a more detailed discus-

have been included. The BGY equation contains the delta
function due to the derivative of the pair interactions. There-

sion; here we only comment that if one uses a representatid@re the integrals in Eq¢6) and(7) are onefold and contain
of the IQA system in the form of its replicated analog, thenthe *“contact” values of the functiongij(zl,zz,\/R2+2212
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FIG. 1. Chemical potential, including {n of hard spheres as a
function of the density as given by the Carnahan-Starling equatio
of state.

FIG. 2. A comparison of the simulatéd@CMC) and theoretical
r3ROZZ+BGY+HNCZ and PY2 approximationgdensity profiles,
p1(2), of an adsorbed fluid and in a disordered inhomogeneous

_ Sy . matrix in a slitlike pore of the widttH =2. The chemical potential
=1) for (i,j)=(1,0) and (1,1 these values have been of the matrix particles i88u,=0.935. The curves labeled 1, 2, 3,

evaluated by |nterpol_at|0n. As Is of_ten the case, the CONVETZ1d 4 here and below are for the chemical potential of fluid species
gence of the numerical scheme is more difficult for the

Br,=0.935, 3.1136, 4.8147, and 5.8346, respectively. The PY2,

HN(?Z Closure th?‘n for the PY2 closure. HNC2, and Monte Carlo results are given by the solid and dashed

_ Finally, we discuss the methodology of the GCMC jines and the symbols, respectively. The resuits for the state labeled

simulations for inhomogeneous gquenched-annealed systemsare not shown in this figure. The dotted line corresponds to the
A rectangular simulational cell whose dimensions weregensity profile of fixed obstaclepy(z).

100X 100y X H with periodic boundary conditions in the
plane parallel to the pore walls was used. The simulations
consisted of two steps. In the first step, the grand canonic@,‘

ensemble technique was used to fill the pore with the har shows the density profiles obtained By=0.935. The

sph(_ere matrix. After eqwhbratlo_n, a configuration of matrix density of the quenched component in a narrow péte,
particles whose number of particles corresponded to the av-

erage number of particles at the given chemical potential wa:2’ is much higher throughout the pore than is the density of
g P g P its bulk counterpart. However, the matrix density distribu-

selected and the second step of the simulations was startetldn po(2), is almost uniform, the contact value is not much

During this step, we performed grand canonical er1sembl'ﬁigher than in the pore cent@Fig. 2). Therefore, the distri-

simulations of the fluid in a pore filled with the matrix spe- bution of empty space throughout the pore width is almost

cies. At the given values of the matrix and fluid Chemicalhomo eneous. The annealed fluid distribution is similar to
potentials, the simulations were repeated several times star- 9 '

! . : - : ; that in a matrix-empty pore. At a low value for the chemical
ing from different matrix configurations. During the produc- . . o
tion runs we performed at least&LCP Monte Carlo steps; potential,Bu4, the presence of matrix species in this narrow

each step consisted of an attempt to move, an attempt Rore results in a low adsorption of the annealed species. With

destroy, and an attempt to create a particle that had bedncreasing chemical potential of fluid species, the density of

selected with equal probability.

We found that 5—10 replicas of the matrix usually assured
good statistics for the determination of the local fluid den-
sity. However, the evaluation of the nonuniform pair distri-
bution functions required much longer runs; at least 100 ma-
trix replicas were necessary to calculate the correlation
functions for particles parallel to the pore walls. However,
even as many as 500 replicas did not ensure the convergence
of the simulational results for perpendicular configurations.
For this reason we do not present such results here. Compari-
sons with theory are made only for the configurations that
are parallel to the pore walls.

First, we analyze the density profiles of adsorbed fluid in
atrix-filled pores at different conditior(&igs. 2—4. Figure

25t

lll. RESULTS

Since we use the grand canonical ensemble, we give a
plot of the relation between the chemical potential and den- F|G. 3. The same as in Fig. 2 but for the pdte=4. In the left
sity for hard spheres in Fig. 1. The approximate but quitepanel the chemical potential of matrix speciegjs,=0.935, in the
accurate Carnahan-Starling equation of state for hard spheréight gu,=3.1136. The nomenclature of the curves is similar to
was used to obtain Fig. 1. that in Fig. 1. The dotted line shows the matrix density profile.
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FIG. 4. The HNC2 and GCMC results for the density profiles
for the case of a wide poréi=6. The chemical potential of the
matrix species iBuo=4.8147; the chemical potential of the fluid
species isBu,=3.1136 (lower curves and symbaglsand Buq
=7.0026(upper curve and symbgls

adsorbed fluid close to the pore walls increases substantially, &
whereas in the pore centpr(z) remains almost unaltered.
Both theories, namely, the HNC2 and PY2 approximations,
yield very similar results for the density profiles; they both
agree quite well with the computer simulation data. How-
ever, some discrepancies between the theory and simulations
are observed close to the walls in a narrow pore.

Now consider adsorption in wider pored,=4 (Fig. 3
andH=6 (Fig. 4. We have studied a fluid distribution in a
pore H=4 at two values of the chemical potential for the
guenched componeniBu,=0.935 andBuy=3.1136. At
higher Buq, a more structured density profile of the matrix
species is seen. In this pore, we observe layering of the ad-
sorbed fluid at high values of the chemical potentia .

This layering is similar to the case of a matrix-empty pore.
The maxima of the density profilp,(z) are observed at
distances that correspond to the diameter of fluid particles. It
seems that the effects of adsorption of fluid species on matrix
particles are not important in the model of equal diameters.
With an increase of the fluid chemical potential, the pore
filling occurs primarily at pore wallgFig. 3). In the case of a

) ; . o -1 -0.5 0 0.5 1
wide pore, a second maximum on the density profil€z) is Z
observed. The theory reproduces the computer simulation re-
sults quite well. The abse_nce_ of_a large dlfferenqe between g 5. (a) (solely for a matrix filled poreThe density profiles
the PY2 and HNC2 theories indicates that blocking effects, the matrix species from the GCMC simulations for pores of
due to the presence of the matrix are not essential. different widths at a fixed value of the chemical potentik,

In Fig. 5 we show the GCMC results for the matrix den- —3.1136. The curves from left to the center arelibe 3, 2.8, 2.6,
sity profile po(z) [part (a)] for the fluid distribution in a 2.4, 2.2, 2.0, 1.8, 1.6, 1.4, and 1.2, respectively. The solid curve
matrix-empty pore[part (b)] and the profilesp;(z) in @  shows the evolution of the contact value of the density profile with
matrix-filled pore[part (c)] for pores of various width. The pore width.(b) (solely for a fluid filled porg The density profiles
contact value ofpo(z) corresponds to a solvation force for for the fluid species at the chemical potenjal, =8.3530.(c) (the
the matrix species at the conditions before they have beeadsorption of the fluid in a matrix filled porérhe values of the
guenched. The contact value of the density profile of fluidchemical potentials for matrix and fluid species are the same as in
species corresponds to a solvation force of pure fluid. Beparts(a) and(b), respectively.
cause of the choice of the matrix and fluid chemical poten-
tials (see the caption for Fig.)8he solvation force that fol- profile p;(z) are much lower for a matrix-filled pore than for
lows from p1(z) exhibits large oscillations. The contact a matrix-empty pore, reflecting lower adsorption in the
value of the fluid particles in a matrix-filled pore does notformer case. We stress that the HNC2 approximation repro-
lead to a straightforward interpretation in terms of the solva-duces well the computer simulation data for pores of differ-
tion force. We merely state that the contact values for theent widths. However, in the pore center we observe a dis-
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~FIG. 6. A comparison of the GCMdsymbol$ and HNC2 FIG. 8. A comparison of the fluid-fluid inhomogeneous pair
(lines) results for the density profiles of the fluid species in adistribution functionsg;,(1,2) obtained using the HNC2 and PY2

matrix-filled pore. The chemical potentials of the matrix and fluid approximations in the ROZ2BGY equations, with GCMC results.

species are the same as in Fig. 5. The pore width=s3.0, 2.4, 1.8,  The functiong!}}" (left pane) andg) (right pane) are for the fluid
and 1.4 from left to the center.

particles in a parallel configuration in the plane of closest approach
to the pore walls and in the pore center. The HNC2 and PY2 results
crepancy between the theory and simulations for wide poregre given by the solid and dashed lines, respectively. The GCMC
(Fig. 6). results are given as symbols. The fluid and matrix particles are of

The adequacy of the HNC2 approximation is not re-equal size. The chemical potentials of matrix and fluid species are
stricted to the model with equal diameters. In Fig. 7 weas in Fig. 5. The pore width isl = 3.

present a comparison between the HNC2 and GCMC results
for the model in which matrix particles are two times larger
than fluid particles. Again the agreement is quite good.

Let us proceed with a brief description of the inhomoge-
neous pair correlation functions for the model. Obviously,
the determination of the pair correlation functions from the
computer simulations is a rather difficult task for this model.
In Figs. 8 and 9 we present the projections of the pair corre-
lation functions for particles parallel to the pore walls. Those
are discussed in the plane of the closest approach to the pore
walls and in the pore center. In the cdde=3, we observe
that parallel correlations between the fluid particles are stron-
ger in the pore center than at the pore wdklsg. 8). In
contrast, the fluid-matrix parallel correlations are slightly
4 ' ' ' . . stronger in the plane of the closest approach, due to the
b higher value of the matrix density at the walls. The theoret-
ical approximationdHNC2 and PY2 agree well with the

P4(2)

910N

FIG. 7. A comparison of the density profiles for the adsorbed . .
fluid species in a matrix-filled pore from GCMC simulatiofsym- 1 15 2 2
bols) and HNC2 resultgsolid lines for pore widthH =3 [part (a)] r
andH=4 [part (b)]. The diameter of the matrix particles is twice
the diameter of the fluid particles. The chemical potentials of the FIG. 9. The same as in Fig. 8 but for the fluid-matrix inhomo-
matrix and fluid species are the same as in Fig. 5. geneous pair distribution function.
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FIG. 10. The HNC2(lines) and GCMC (symbol$ fluid-fluid FIG. 12. The HNC2solid lineg and PY2(dashed lingsinho-
inhomogeneous pair distribution functions for a configuration par-mogeneous fluid-fluid pair distribution functions for the model with
allel to the wall in the plane of closest approaahlid line and  equal diameters of the fluid and matrix particles in the pdre4.
diamonds and in the pore centédashed line and crosgeg)} and ~ The chemical potentials of matrix and fluid species #go
gi¥, respectively. The diameter of matrix particles is twice the =3.1136 and8u,=5.8346, respectively. The curves labeled 1, 2,
diameter of fluid particles. The chemical potentials of matrix andand 3 correspond to a parallel configuration of the fluid particles in
fluid species are as in Fig. 7. The pore widtiHs-4. the plane of closest approach to the pore walls, in the pore center,
andg??™. In the normal configuration one of the fluid particles is
fixed at contact with a pore wall and the second one moves along

simulation data. Similarly to the case of homogeneous partl¥he normal to the pore wall. The pair distribution function for the

qgencheq systempl4], the HNC2 appr.oximation. yields normal configuration is shifted by unity along thexis for the sake
slightly higher contact values for the pair correlation func- ¢ petter visualization.
tions at the contact than does the PY2 approximation. The

accuracy of each approximation depends on the quench coparticles. However, the intracore blocking effects are larger
ditions and on the chemical potential of fluid species. How+or parallel configurations of particles. Outside the hard core
ever, both theories are adequate for the model with equakgion, the blocking effects are negligible for all the configu-
diameters of particles as well as for the model when theations consideredFig. 13. Similar effects to those shown

obstacle diameter is two times larger than that of the fluidn Fig. 12 are observed for the fluid-matrix pair correlation
particles (Figs. 10 and 11 The discrepancy between the fynction (Fig. 14.

theories and simulations increases slightly for the model of
unequal diameters in comparison with that for equal diam-
eters, especially for intermediate interparticle separations.
The positions of the second maxima of the correlation func- We have solved the inhomogeneous replica OZ equations
tions can be explained from geometrical considerations. for a model of an inhomogeneously quenched matrix and an
We present both the normal and parallel projections of thenhomogeneous fluid. We have considered the simplest
fluid-fluid pair correlation function in Fig. 12. It is important model (hard sphergsand approximations. When the pore is
to note that the normal correlations are stronger in compariwide, “layering” is found in the density profiles. As the pore
son to the parallel ones for small separations between fluidecomes more narrow, these layers are “squeezed” out. The

IV. CONCLUSIONS

911"

919

N W A OO N O ©
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T FE

1.5 2 25 3, 35 4 45
FIG. 13. The blocking parts of the inhomogeneous pair distri-

FIG. 11. The same as in Fig. 10 but for the fluid-matrix pair bution functions for fluid particles given in Fig. 12 under all the
distribution function. same conditions.
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i . . If more sophisticated approximations for the IROZ equations were (ised
hypernetted chain closure consistent with the ROZ equations may be imple-
mented without difficulty and models that include more complex and at-
tractive fluid-fluid, fluid-matrix, and fluid-walls interactions were used, we
expect that interesting effec{such as phase transitionsould be found.

The question of the accuracy of the PY and HNC approximations should be
reconsidered in these situations. Density functional theory should be consid-
ered. So far, such theories have not been applied to inhomogeneous partly
guenched systems. Also, interesting possibilities can arise if the matrix
would be prepared in some special way.

Undoubtedly, these and other options may yield unexpected and rich struc-
tural and thermodynamic behavior in partly quenched confined systems. The
perspectives for investigations in the field that is just opened by the solution
of IROZ equations are very promising.
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